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PREFACE

Part of the Project RAND research program consists of

basic supporting studies in mathematics. The mathematical research

presented here concerns the periodic solutions of differential-

difference equations, which arise in a wide variety of control

problems.
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SUMMARY

In this Memorandum the author studies the asymptotic behavior

of solutions of real difference-differential equations, and the question

of the existence and behavior of periodic solutions. The equations

considered arise in a wide variety of control problems.
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ON THE NONLINEAR DIFFERENCE-DIFFERENTIAL

EQUATION k(t) = g, [x(t) ]g 2 [x(t- 1)1

1. INTRODUCTION

Real difference-differential equations of the form

i) •(t) = gl rx (t) ] g2 Ex(t-i

have been discussed, for linear g, and g2, by E. M. Wright [7 ],

S. Kakutani and L. Markus [4], and G. S. Jones [3 1.

In this Memorandum we shall prove some results on the

asymptotic behavior of solutions, and on the existence and behavior

of periodic solutions, assuming only that g2 is continuous and g,

satisfies a Lipschitz condition, i.e., that there exists a number L

such that,for any pair of real numbers x1 and x2P

gl (x) - gz (x2 ) I <L ix 1 - x2 1

It can be shown by means of the theory of contingencies [5],

or by means of obvious adaptations from standard techniques of

ordinary differential equations [2 J, that for any function CP(t) in

the set C [0, 1 ] of continuous real-valued functions defined on the

closed unit interval, there exists a unique continuous function

x (t) defined for all t > 0 such that

x,.t) cp(t) for 0<t<l,

kP(t) =1gl [x p(t) 3 g2 [x o(t- 1)] for t >1.
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Any such function x (t) is called a "solution curve" to (1).

2. CONSTANT SOLUTIONS

The constant solutions to (1) divide into two classes: those

that are zeros of g1 , and those that are zeros of 92 but not of

g 1 . The former we shall call "current critical points, " and the

latter we shall call "delayed critical points. " In view of the Lipschitz

condition on gl' current critical points cannot be crossed by any

solution curves for t > 1, and thus they divide solution curves into

disjoint, nonintersecting families for t > 1.

We say that a constant solution c is "stable" if there exists

an £>O suchthat if IJ cp-cjj <e, then limr x C(t) = c.

t -*p

It is often easy to determine whether or not a constant

solution is stable. We shall call a critical point c "attractive" if,

for x sufficiently close to c, the sign of gl(x) g2(x) is opposite

to the sign of x - c ; and we shall call c "repulsive" if, for x

sufficiently close to c, the sign of g1(x) g2 (x) is the same as the

sign of x - c. Otherwise, we shall call a critical point "attractive-

repulsive. " The facts are best summarized in tabulair form. The

entries for current critical points are obvious, but those for delayed

critical points are a bit tricky. The reader may well wonder why we

are able to say only that repulsive and repulsive-attractive delayed

critical points are not "necessarily" stable, in view of the fact that
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Table

CRITERIA FOR STABILITY OF A CONSTANT SOLUTION

Current Delayed
Solution Critical Point Critical Point

Repulsive Not stable Not necessarily stable

Repulsive- Not stable Not necessarily stable
attractive

Attractive Stable Stable if I f(c)g' (c) I < Y/2,
otherwise not necessarily
stable
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one can always find constant functions in the neighborhood of such

critical points for which the corresponding solution will, in the short

run, tend away from the critical point. The answer, of course, is

that in general we have no guarantee that in the long run this solution

will not return to c and approach arbitrarily close to it (with damped

oscillations in the repulsive case, or from the attractive side in the

attractive-repulsive case). The author has been unable to construct

an example in which this actually happens, however, and so we must

consider the question of whether or not a delayed repulsive or

repulsive-attractive critical point can be stable as unsolved. It is

obvious, of course, that unstable critical points of these sorts exist.

The fact that an attractive delayed critical point is stable if

I gl(c) g2(c) I < r/2 can be viewed as a special case of a theorem of

Wright [6 1. The method is simply to consider the equation as being

a perturbed linear equation in a suitably small neighborhood of the

critical point. The fact that the critical point need not be stable if

. gl(c) g2(c) I > r/2 is shown by the example

I

i(t) = - (t-- 1),

to which the function

U.

x(t) - k cos 1 t

is a solution for any value of k.
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3. OTHER PERIODIC SOLUTIONS

Now let us turn our attention to nonconstant periodic solutions

of (M). Since current critical points divide solution curves into non-

intersecting families, it is clear that any nonconstant periodic solution

x •(t) must take values confined to an interval (or a half-line) in which

gl(x) does not change sign. Since any periodic solution must have

maxima and minima (at which k (t) = 0), it follows that any noncon-

stant periodic solution must pass through at least one delayed critical

point.

It is convenient to restrict our attention to "really isolated"

delayed critical points. By a really isolated delayed critical point c

we mean a point such that, if c' is any other delayed critical point,

then there is a current critical point between c and c'. The

important feature about really isolated delayed critical points for

our purposes is the fact that a nonconstant periodic solution that

intersects a really isolated delayed critical point cannot intersect

any other critical points.

In the sequence of lemmas which follows, we shall assume,

unless the contrary is stated, that c is a really isolated delayed

critica± point, and that x(t) is a nonconstant periodic solution that

intersects it.

Lemma 1. The critical point c is not repulsive-attractive.'
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Proof. If c were repulsive-attractive, then x(t) would

either be monotone nonincreasing or monotone nondecreasing, and

thus could not be nontrivially periodic. Thus c is either repulsive

or attractive.

Lemma 2. Between any two successive intersections of

x(t) with x = c, there is exactly one extreme point (relative

minimum or maximum), and between any two successive extreme

points there is exactly one intersection of x(t) with x = c.

Proof. Let T be the primitive period of x(t); i. e., letT

be the least positive value such that x(t + T) - x(t) for all t. Then

the map t -- t + 1 (mod T) will carry the points of intersection of

x (t) with x - c for 0 <t < T onto the points in the same interval

at which x(t) - 0. Thus the number of extreme points in a period

is at most equal to the number of intersections with c. It is clear

that there must be at least one extreme point between two successive

intersections with c, and thus that there must be exactly one

extreme point, for if there were more, then we would have more

extreme points than intersections with c. Thus every point where

i(t) - 0 is a relative maximum or a relative minimum. Note that

this argument holds even if we interpret "point of intersection with

c" and "extreme point" as meaning "closed interval on which

x(t) - c" and "closed interval on which i(t) - 0. " Since, however,
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the above argument shows that there is no point at which both

x(t) = c and k(t) - 0, this latter situation cannot arise. This

observation is worth putting in a separate lemma.

Lemma 3. The curve x(t) is never tangent to x = c.

Now let us turn to the question of how regularly x(t) intersects

x = c. Define the crossing number of x(t) to be the least number n

such that x(t) intersects x = c exactly n times in some closed

unit interval of time.

Lemma 4. If the crossing number of x(t) is n, then for

any positive to, x(t) intersects x = c either n or n + 1 times

in the interval t <t <t + 1.
O-- -- 0

Proof. By definition, x(t) intersects x = c at least n times

in any closed unit interval. Let to be chosen so that x(t) - c =.O

exactly n times in the interval t 0 < t <t + 1. Let k be some

quantity greater than 1, and let n" denote the number of zeros of

x(t)-c in the interval t + k<t <t + k+ 1. Let n' denote the

number of zeros of x(t)-c in the interval t + 1 <t <t + k. Let0 0

e, e', and e" denote the number of extreme points for x(t) in the

intervals t<t<t + 1, t + 1 <t<t +k, and t +k<t<t +k+ I,

0e se-o 0 0

respectively.
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It is obvious that n + nt f e + el. Now there are two

possibilities to consider: Either the first "interesting" point in

t <t<t + k+ 1 is an extremum or it is a zero of x(t)-c. In0-- -- 0

the former case, we have the following obvious inequalities:

n + nf + n" <e + e' + 2",

n >e-1.

Using the fact that n + n' =e' + e", we derive

el + e" + nI <• e + el + e",

nfl <e <n+ 1.

In the latter case, we have

n+ n' + n" <e + e' + e"+ 1

"n >e.

We derive

+e 4" e" + n" < e + e + e-+ I

n" <e + 1 <n + 1.

Thus in either case we have n < n" < n + 1, which completes the

proof.

In other words, Lemma 4 says that the number of zeros of

x(t) - c per unit time is nearly independent of t.
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The proof of Lemma 4 does not depend strongly on the

periodicity of x(t). If we delete the parts of the argument that do

depend on periodicity, we are left with the following lemma.

Lemma 5. Let y(t) be any solution, and let y(t) - c have

n zeros in the interval t <t <t + 1. Then y(t) - c has at most

n+ zeros in the interval t +k<t<t 0+k+, for any >.

Proof. For k > 1, the proof is so similar to the periodic

case that we shall leave it to the reader. For k < 1, let n' denote

the number of zeros in t <t <t + k, n" denote the number in
0- 0

t + k<t <t + 1, and n"' denote the number in t + 1 <t <t + k+ 1.o 0 -o 0 -- 0

Let e' denote the number of extreme points in t <t < t + k, e"

the number in t + k<t <t + 1, and el' the number in

t + 1<t<t 0t+ k+ 1. Clearly we have

n"' - 1 < el',

n! evil.

Thus we get

nt + n"i el" + n" > n"' + n"- 1,

which was what we sought to prove.
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Lemma 6. If x(t) has crossing number n, then there

exists open unit intervals in which x (t) has n + 1 zeros.

Proof. Let t be a zero of x(t) - c. Then, by Lemma 3,

t + 1 cannot be a zero. Hence, by continuity, we can find an e> 00

such that there is no zero of x(t) - c in the interval

t0+ 1-- <t < to0+ 1 + c. Thus if there are only n zeros in the

interval t <t <t + 1, there will be n- 1 zeros in the interval

to + C <t t 0+ 1 + C, which is impossible by hypothesis. It

follows that there are n + 1 zeros in the interval t <t <t + 10-- -o

and thus there are n + 1 zeros in the open interval

t -¢<t<t + 1-c.
o o

To combine Lemma 5 and Lemma 6 in an attractive package,

we need another very simple lemma.

Lemma 7. If a continuous function has n + 1 zeros in an

open unit interval, at each of which it changes sign, then there is

an c > 0 such that any continuous function within c (in the uniform

metric) of the function in question will have at least n + 1 zeros in

the same open unit interval.

Proof. Let y (t) be the function in question, and let

t 0 <t<t + 1 be the open unit interval. Let t (i = 1, 2, ... , n+ 1)

be the zeros in the interval. Let zi(i= o, 1, ... , n+ 1) be points
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chosen so that ti < zi < ti+1 , Thus the nonzero quantities

y(z 0 ), y(z1 ), ... , are alternately positive and negative. If we

choose

1 min lIy(zi) 1,
2 O<i<n+l

then any continuous function within c of y will also be alternately

positive and negative at the zi's, and thus will have at least n + 1

zeros in the interval.

The following theorem simply combines the results of

Lemmas 5, 6, and 7.

Theorem 1. Given an equation of the form (1), let c be a

delayed critical point such that if c' is any other delayed critical

point then there is a current critical point between them. Let x(t)

be a nonconstant periodic solution with crossing number n with

respect to c. Then any function cp(t) c C CO, 1 ] that does not cross

any current critical points, and is such that x P(t) is asymptotic to

x(t), must cross c at least n times.

Example. Consider

k+ 1
:Wt) - C10-1) k+1x (t - 1),

where

ak - (k +•) k an integer.
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Then cos(akt) is a nonconstant periodic solution, and b = 0

is an associated really isolated delayed critical point. Note that
2

cos~akt0 has zeros k 1 units apart, and thus has frequency of

oscillation I k I. Theorem 1 now says, for example, that the

solution to

7,rS(t) 7wT (t- 1),

which corresponds to

c0t) = cos 2 rt, 0 <t < 1

cannot approach any of the nonconstant periodic solutions

cos (a3t + 6), since the latter have crossing numbers three while

the former has only two zeros.

Note that in the example above the c is repulsive for odd

positive k and attractive for even positive k. This situation is

typical, as the following lemma shows.

Lemma 8. Let c be a really isolated delayed critical point

with an associated nonconstant periodic solution x(t) having crossing

number n. Then c is repulsive if and only if n is odd, and

attractive if and only if n is even.

Proof. Suppose x(t) has odd crossing number n. Let

t <t<t + 1 be an interval in which x(t)-c has n zeros.O-* -- 0
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Assume, for definiteness, that x(t ) > c. Then since n is odd, it

follows that x(t° + 1) < c. If c is attractive, then k(t + 1) < 0,

and if tI is the first zero in the interval, then * (t) < 0 for

t + 1 <t <t 1+ 1. Thus if e is a sufficiently small quantity, there

can be only n- 1 zeros in the interval t 1 + C<t < t 1 + 1+ C. This

is a contradiction, so c cannot be attractive, and thus (by Lemma 1)

must be repulsive. An entirely similar argument shows that if n

is even, c cannot be repulsive, and thus our lemma is proved.

Note that in the example above the periodic solution

x = cos (akt) has period 4/12k+I . Thus as k gets large, the

period of the periodic solution gets small. This suggests that large

absolute values for gl(x) and g2 (x) may be required in order to

obtain short periods for periodic solutions. The following theorem

confirms this suspicion.

Theorem 2. If Ig 1(X)I < k1 Ix - c I, 1g 2 (x) 1 < k2 , and if

there exists a periodic solution oscillating about the really isolated

critical point c with period r, then

2-<k k
r 1 2*

Proof. Let x(t) be the periodic solution in question, let h

be the smallest relative maximum achieved by Ix(t) - c I , and let

h be achieved between the consecutive zeros t1 and t 2 of x(t)-c.
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Then t1 + 1 and t2 + 1 are consecutive extrema of x(t) - c. Clearly

Ix(t 2 + 1)-x(t +1)I >2h; but on the other hand,

t 2+1

Ix(t 2 + 1)- x(t 1 + 1)1 = 1 g1 (x(s)) g2(x(s-1)) ds I
t 1+1t1+

t 2

< t k2 k1 Ix(s)-c I ds-t21

< k2 k1 h(t 2 - t 1 ).

Thus we have

2h<k 2 kI h(t 2 -t 1 ).

Since t 2 -t 1 <r, it follows that

2<kI k2r,

which completes the proof.

4. THE EXISTENCE OF NONTRIVIAL PERIODIC SOLUTIONS

The lemmas and theorems above deal with conditions that

nonconstant periodic solutions must satisfy, but they shed very

little light on the question as to whether or not such solutions

exist. Now we shall establish some conditions that ensure the

existence of at least one nonconstant periodic solution.
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Theorem 3. Let there be given an equation of the form (1), and

numbers m>O, a>O, k>O, and cI <c <c 2 , such that

(a) g1 (c 1 ) -g 1 (c 2 ) = 0, g1 (x) >0 for cI <x <C 2 ,

(b) g2 (c)=0, 1g2 (x)I _>kmin (a, Ix-ci) for

CI <x c2

(c) g2 (x) is monotone decreasing for Ix - c I < a/4,

(d) 4m>gl(x)>m>4/k for Ix-cI <a.

Then there exists a periodic solution x(t) to (1) with period greater

than 2 and crossing number 0, such that

max [x(t)-c >a, mrin x(t)-c] <-a.

Proof. Define

M1 l.u.b. Igl(x)I M2 l.u.b. 1g2 (x)I
c I<x<c2  c 1 <x<C 2

Lg1 (x 2 ) - g 1 (xl) I
L= l. u.b.

C1<X1<X2<C2 x2 -x 1

M MM1 M B amin(c 2 -c, c-c 1 ).

Let K be the set of all functions c in C CO, 1 1 that satisfy

all three of the following conditions:
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(M) (0) =c,

(ii) at < 0(t) - c < c 2 - Be-M2L _ c

cpt 2) - cp{t1)

(iii) 0< t2 _t 1 <M for 0<t <t <1.
- t2  t 1 2-

It is easy to see that is a closed convex family of equi-

continuous functions. By the proof of the Birkhoff-Kellogg theorem

[1 ], K has the fixed-point property. If CPe K, then there exists

a smallest t' > 1 such that x CP(t) = c + a. It is clear that

CP (T)<0 for t'<T<t'+ 1. Nowwe have xP Wt'+ 1)<c-a, since

otherwise we would still have

t'+l t'+l
x (t'+l)--x (t1) = k (T) d T f gl(x ( T)) g2 (x (-l)) d-tp t'

t'+l<f (-ka(T- t')) dT
t 

k

=-2 a,

which is acontradiction. Now there clearly exists a unique

smallest t > 0 such that x Ct ) = c. Define

O(Wp)=x (t +t), 0<t<l,

and let K' be the set of all functions cp in C [0, 1J that meet all three

of the following conditions:
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(4i) P(O) = c I

(ii') -a t > cp(t) - c_>+ Be-M 2 L _ c

cp(t2 ) -cp(tI)

(iii') 0 > t2 _ ) >M for 0_<t <t < 1.t 2 - 2 1 - 1 2-

Now the map 13 carries K into K'. If (P E K, then 0(cp)

obviously satisfies (i') and (iii'). It satisfies the second inequality

in (ii') by virtue of the fact that

I k (t) I < M 2 L Ix (t)-c Icp - 1.

To show that it satisfies the first inequality in (ii'), we have

only to show that if 3(Cp) - W, then

(2) (t)<--a if ý (t) >c--a.

In view of condition (ii) on K, and condition (b), (c), and (d)

in Theorem 3, we have

j (t) <--m k min (a,, I a(t C- 1) .

If t - 1 > 1/4, then since m_> 4/k the desired inequality (2)

follows trivially. Thus our consideration is reduced to the case

t P- I < 1/4, I CP(tq, - 1)-c 1< a/4A

(3) r(t) <-m k q(t - )- cl.



-18-

How small can Q (t -1) be? Suppose that t-1 -- h. Then,

by conditions (b) and (c) of Theorem 3, and condition (iii) on K, we

have

a<hk lCO(t -1)-cl 4m.

Thus we obtain

hkm> a a
4- 4cp(t P- 1) -cl 4 a

4

It is also clear, however, by condition (b) on K, that

I p(t -1)-cl >ah.

Substituting into (3), we find

S(t) <--m k a h <--a,

which is the inequality we sought.

Thus K1 is carried into K2 by 3. Mutatis mutandi, K 2

is carried into K1 by D. It is easy to see that 3 is continuous on

K and also on K 2. Thus 32 is a continuous map of K1 into

itself, and so by the Birkhoff-Kellogg theorem it has a fixed point

in K 1 . The solution x CP(t) corresponding to this fixed point is

clearly a periodic solution to (1) having period greater than 2,

having crossing number 0, and satisfying the inequalities
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max (x •(t) - c)_> a, min (x P (t) - c) <-a.

Corollary. Let there be given an equation of the form (1),

and numbers m > 0, a > O, k> 0, and cI <c <c 2 , such that

(a) gl(cl) = g1 (c 2 ) = 0, gl(x) < 0 for cI < x < c2 ,

(b) g2 (c)=0, 1g2(x)I >kmin(a, Ix-cl) for c<x <xc2 ,

(c) g2 (x) is monotone increasing for Ix - c[ <a/4,

(d) -4m<g 1 (x)<-m<-4/k for Ix-cl <a.

Then there exists a periodic solution x(t) to (1) with period greater

than 2 and crossing number 0, such that

max [x(t) - c ]> a min Fx(t) - c ]<-a.

Proof. The proof is the same as that for Theorem 3, with

signs reversed.

Corollary. Given an equation of the form (1). if c an___dd c2

are current critical points, c is an attractive, really isolated,

delayed critical point between them g2 ' exists and is continuous

in a neighborhood of c, and Igl(c) g2 '(c) I > 4, then there exists

a Periodic solution oscillating about c with period greater than 2

and crossing number 0. and c
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Proof. For some very small c > 0, take g2 '(c)-e as k,

and find some small a > 0 such that the conditions (b), (c), and (d) of

Theorem 3 (or the corollary above) are satisfied. Since a may be

taken as small as we please, and a 2 carries K 1 into itself, it

follows that c must be unstable.

Theorem 4. Let there be given an equation of form (1), and

numbers m >0, a > , k> 0, cl, and c, such that

(a) gl(cl) = 0, gl(x) > 0 for x on the same side of

c as c,

(b) g2 (c) = O, 1g2 (x) 1 >kmin(a, Ix-ci) for x on

the same side of cI as c,

(c) g2 (x) is monotone decreasing for Ix - cl <a/4,

(d) 4m>gl(x)>m>4/2 for Ix-cl<a.

Then there exists a periodic solution x(t) to (1) with period greater

than 2 and crossing number 0, such that

max(x(t)-c)_>a, min(x(t)--c)_<-a.

Proof. For definiteness, assume that c <c 1 . Let L be a

Lipschitz constant for gl, i.e., let 1gl(x 1 ) - g1 (x 2 )I < L[ I Xl-x 21
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and define

M2L
M l.u.b. Ng2 (x)i, x c + (c - c)e

c<x<c 1

M* 1l.u.b. 2 , MIl.u.b. 1gl(x)I,2 Xx <x<c
a.--

M =M 1 M *
12*

Le,- K be the set of all functions cp in C E0, 1] that meet

all of the following conditions:

(W) cp(o) = c

-M L
(ii) at <cp(t)-c <c 1 -(c 1 -c)e c

CP(t 2 CP •(1)

(iii) 0 < t 2  t <M for <t 1 <t2-.

Similarly, define K' to be the set of all functions c in

C lo, 1 J that meet all of the following conditions:

(i') CP(o) = c,

(ii') -at>cP(t)-c>x -c,

P4(2) -- CP(tl)OR) 0 t20 t> >-M for 0<t 1 <t 2 <1.

The rest of the proof is virtually identical to the latter portion

of the proof of Theorem 3, and will not be repeated.
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Corollary. Let there be given an equation of the form (1),

and numbers m >0, a > O, k>O, Cl, and c, such that

(a) gl(c 1 ) = 0, g, (x) <0 for x on the same side of c1 as c,

(b) g2 (c) 00, ig 2(x)l >kmin(a, Ix-cl) for x onthe

same side of c1 as c,

(c) g2 (x) is monotone increasing for Ix - cI < a/4,

(d) 4m>gl(x)>m>4/k for Ix-cl <a.

Then there exists a periodic solution x(t) to (1) with period greater

than 2 and crossing number 0, such that

max (x(t) - c) > a, min (x(t) - c) <--a.

The following are corollaries of Theorems 3 and 4 together.

Corollary. Given an equation of the form (1) that has at least

one current critical point, if c is an attractive, really isolated,

delayed critical point such that g2 1 exists and is continuous in a

neighborhood of c, and Ig, (c) g2'(c) I > 4, then there exists a

periodic solution oscillating about c with period greater than 2

and crossing number 0, and c is unstable.

The theorems and corrollaries above are easy to apply in

practice. As an example, let us consider the bilinear case of (1).
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That is, take g1 (x) = x, g2 (x) = c - x. Theorem 3 shows that if

c > 4 then c is an unstable critical point, and we can find a periodic

solution xCt) with period greater than 2 and crossing numbers 0,

such that

max (x(t)-c) > a, min (x(t) -c) <-a,

where

a =rmin (c - 4) -)

Jones [3 ] has shown that in fact periodic solutions exist if

c > r/2. So far as the author knows, Jones was the first to ever

use fixed points of maps like 3 2 to prove the existence of periodic

solutions to differential-difference equations.

5. QUESTIONS FOR FURTHER RESEARCH

Can the constant 4 in the last corollary of Sec. 4 be replaced

by r/2 in the general case as well as in the bilinear case?

Do there exist bounded solutions to (1) that are asymptotic

neither to a constant solution nor to a periodic solution?

Under what circumstances do there exist periodic solutions

with crossing numbers greater than 0?
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